Natural Language Processing

Part 4: lexical semantics

Lexical semantics

- A **lexicon** generally has a highly structured form
 - It stores the meanings and uses of each word
 - It encodes the relations between words and meanings
- A **lexeme** is the minimal unit represented in the lexicon
 - It pairs a stem (the orthographic/phonological form chosen to represent words) with a symbolic form for meaning representation (sense)
- A **dictionary** is a kind of lexicon where meanings are expressed through definitions and examples

son noun

- a boy or man in relation to either or both of his parents.
- a male offspring of an animal.
- a male descendant : the sons of Adam.
- (the Son) (in Christian belief) the second person of the Trinity; Christ.
- a man considered in relation to his native country or area : one of Nevada's most famous sons.
- a man regarded as the product of a particular person, influence, or environment : sons of the French Revolution.
- (also my son) used by an elder person as a form of address for a boy or young man : "You're on private land, son."

Lexicons & dictionaries

• Definitions in dictionaries exploit words and they may be circular (a word definition uses words whose definitions exploit that word)

right adj.

- 1. of, relating to, situated on, or being the side of the body which is away from the side on which the heart is mostly located
- 2. located nearer to the **right** hand than to the left
- 3. done with the **right** hand
-
- The paradox is that the dictionary elements are not direct definitions
 - The are description of the lexemes made up of other lexemes assuming that the user has enough information on these other terms!
 - This approach would fail without the assumption that the user has already enough a priori knowledge deriving from the real world
 - However the description provide a great amount of information on the relationships among the words allowing to perform semantic inferences

Relationships & senses

• Several kinds of relationships can be defined between lexemes and senses (some of them are important for automatic processing)

Homonymy

It is a relation between words that have the same form (and the same PoS) but unrelated meanings

- e.g. *bank* (the financial institution, the river bank)
- It causes ambiguities for the interpretation of a sentence since it defines a set of different lexemes with the same orthographic form (bank¹, bank²,..)
- Related properties are homophony (same pronunciation but different orthography, e.g. *be-bee*) and homography (same orthography but different pronunciation pésca/pèsca)

Polysemy

It happens when a lexeme has more related meanings

 It depends on the word etymology (unrelated meanings usually have a different origin) - e.g. *bank/data bank/blood bank*

Polysemy/Synonymy

For polysemous lexemes we need to manage all the meanings

- We should define a method to determine the meanings (their number and semantics) and if they are really distinct (by experts in lexicography)
- We need to describe the eventual correlations among the meanings
- We need to define how the meanings can be distinguished in order to attach the correct meaning to a word in a given context (word sense disambiguation)

• Synonymy

It is a relationship between tow distinct lexemes with the same meaning (i.e. they can be substituted for one another in a given context without changing its meaning and correctness) – e.g. I received a gift/present

- The substitutability may not be valid for any context due to small semantic differences (e.g. *price/fare of a service the bus fare/the ticket price*)
- In general substitutability depends on the "semantic intersection" of the senses of the two lexemes and, in same cases, also by social factors (*father/dad*)

Hyponymy/Hypernymy

- **Hyponymy** is a relationship between two lexemes (more precisely two senses) such that one denotes a subclass of the other
 - car, vehicle shark, fish apple, fruit
 - The relationship is not symmetric
 - The more specialized concept is the hyponym of the more general one
 - The more general concept is the hypernym of the more specialized one
 - Hyponymy (hypernymy) is the basis for the definition of a taxonomy (a tree structure that defines inclusion relationships in an object ontology) even if it is not properly a taxonomy
 - The definition of a formal taxonomy would require a more uniform/rigorous formalism in the interpretation of the inclusion relationship
 - However the relationship defines a inheritance mechanism of the properties from the ancestors of a given a concept in the hierarchy

Wordnet

- It is a lexical database for English (versions for other languages are available) organized as a **semantic network of senses**
 - It represents nouns, verbs, adjectives, and adverbs but it does not include functional terms in the closed classes (prepositions, conjunctions, etc.)
 - The lexemes are grouped into sets of cognitive synonyms (synset), each representing a distinct concept
 - A set of senses (synset) is associated to each lexeme (unique orthographic form)
 - Synsets are linked by conceptual/semantic and lexical relationships
 - Wordnet consists in lexicographic files, an application to load these files into a database and a library of search and browsing functions to visualize and access the database contents

Wordnet Statistics

PoS	Unique strings	Synset	pairs word-sense
Noun	117,798	82,115	146,312
Verb	11,529	13,767	25,047
Adjective	21,479	18,156	30,002
Adverb	4,481	3,621	5,580
Total	155,287	117,659	206,941

- Nouns have an average of 1.24 senses, verbs 2.17, adjectives 1.40, adverbs 1.25
- The actual total number of distinct stings is 147,278 (the same string can belong to more than one PoS class)

Synset

• A synset is a set of synonyms that define a concept or word meaning

- About half of the synsets (~54%) contains only one term, about one third (~29%) 2 terms, about 10% 3 terms
- An annotation (gloss) explaining the meaning is associated to each synset (especially to those containing a single term)
 - A synset contains ~1.75 terms in average)

Synset - verb example

5 senses of derive

Sense 1

deduce#1, infer#1, deduct#3, derive#1
-- (reason by deduction; establish by deduction)
=> reason#1, reason out#1, conclude#1 -- (decide by reasoning; draw or come to a conclusion; "We
reasoned that it was cheaper to rent than to buy a house")

Sense 2

derive#2, gain#1 - (obtain; "derive pleasure from one's garden")

=> obtain#1 -- (come into possession of; "How did you obtain the visa?")

Sense 3

derive#3 - (come from; "The present name derives from an older form") => evolve#2 -- (undergo development or evolution; "Modern man evolved a long time ago")

Sense 4

derive#4, educe#2 -- (develop or evolve from a latent or potential state)

=> make#3, create#1 -- (make or cause to be or to become; "make a mess in one's office"; "create a furor")

Sense 5

derive#5, come#18, descend#2-- (come from; be connected by a relationship of blood, for example; "She was descended from an old Italian noble family"; "he comes from humble origins")

Names

- Names are organized in a hierarchy of specializations (hyponyms) and generalizations (hypernyms)
 - In the 3.0 version there is a unique root category {entity} referred to as unique beginner whereas in the previous versions there are mode unique beginners (25 in version 1.7.1)

```
vase#1 -- (an open jar of glass or porcelain used as an ornament or to hold flowers)
=> jar#1 -- (a vessel (usually cylindrical) with a wide mouth and without handles)
=> vessel#3 -- (an object used as a container (especially for liquids))
=> container#1 -- (any object that can be used to hold things (especially a large metal boxlike object of standardized dimensions that can be loaded from one form of transport to another))
=> instrumentality#3, instrumentation#1 -- (an artifact (or system of artifacts) that is instrumental in accomplishing some end)
=> artifact#1, artefact#1 -- (a man-made object taken as a whole)
=> whole#2, unit#6 -- (an assemblage of parts that is regarded as a single entity; "how big is that part compared to the whole?"; "the team is a unit")
=> object#1, physical object#1 -- (a tangible and visible entity; an entity that can cast a shadow; "it was full of rackets, balls and other objects")
=> physical entity#1 -- (an entity that has physical existence)
=> entity#1 -- (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))
```

12

Name hierarchy

• The first three levels of the name hierarchy starting from the unique beginner {entity} (root) in Wordnet 3.0

Wordnet relationships- names & verbs

- For nouns the following relationships are provided among synsets
 - Hyperonymy X is a kind of Y (car \rightarrow vehicle)
 - Hyponymy Y is a kind of X (vehicle \rightarrow car)
 - Coordinate terms Y is a coordinate term of X is X and Y share a common hyperonym (car and motorcycle)
 - Holonymy X is part of Y (wheel \rightarrow bicycle)
 - Meronymy Y is part of X (bicycle \rightarrow wheel)
- For verbs the following relationships are provided among synsets
 - Hyperonymy the activity of X is a kind of Y (to see \rightarrow to perceive)
 - Troponymy the activity Y executes X in some sense (to eat → to devour)
 - Entailment Y is required to perform X (to snore \rightarrow to sleep)
 - Coordinate terms Terms share a common hyperonym (to hear-to see as cases of to perceive)

Wordnet relations- adjectives & adverbs

- Words can be linked to other words by lexical relationships such as antonomy (words that have opposite meanings)
 - good \Leftrightarrow bad, day \Leftrightarrow night, exit \Leftrightarrow entrance
- For adjectives the following relationships are defined
 - Related nouns– (noisy \rightarrow noise)
 - Similar to- (noisy \rightarrow clanking)
 - The **descriptive adjectives** are organized into groups containing a main synset (head) and satellite synsets. Each group is organized around a pair (sometimes a triple) of antonyms corresponding to the main terms. The satellite synsets are those linked by the "*Similar to*" relationship.
 - Relational adjectives are used to categorize the noun and they have neither a group structure nor an antonym (e.g. musical, nervous)
- For the adverbs the following relationships are defined
 - Base adjective (slowly \rightarrow slow)

Example - descriptive adjective

Word sense disambiguation

- Word sense disambiguation (WSD) is the task of selecting the correct sense for a word in a given sentence
 - This problem has to be faced for words having more meanings
 - It requires a dictionary listing all the possible senses for each word
 - It can be faced for each single word or jointly for all the words in the sentence (all the meaning combinations should be considered)

I ate a cold **dish** I washed a dirty **dish** The *served* a cold **dish**

- Several approached to WSD have been proposed
 - (Machine Readable) Dictionary and knowledge-based, Machine Learning Supervised methods, Semi-supervised and Unsupervised methods

Supervised learning

- WSD can be approached as a classification task
 - The correct sense is the class to be predicted
 - The word is represented by a set (vector) of features to be processed as the classifier input
 - Usually the feature include a representation of the word to be disambiguated (target) and of its context (a given number of words at the left and the right of the target word)
 - The word itself, the word stem, the word PoS can be exploited as features
 - The classifier can be learnt from examples given a labeled dataset
 - Different models can be exploited to implement the classifier (Naïve Bayes, neural networks, decision trees...)
 - The limitation of the learning based approach is scalability when a large number of labeled examples is required

Naïve Bayes

• The bayesian approach aims at maximizing of the probability of sense *s* given the feature vector f_w describing the target word

$$\hat{s} = \operatorname*{argmax}_{s \in S} p(s|f_w) = \operatorname*{argmax}_{s \in S} \frac{p(f_w|s)p(s)}{p(f_w)}$$

• With the simplifying assumption that the feature vector entries (words in context) are independent of each other $p(f_w|s)$ can be written as

$$p(f_w|s) = \prod_{j=1}^n p(f_j|s)$$

- the probabilities $p(f_j|s)$ model the statistics for distribution of feature j (e.g. a given word) in the context of word w when having the sense s
- p(s) is the a priori probability of each sense of the word

Dictionary-based methods

- A dictionary can provide useful information about the contexts related to the word senses (glosses)
 - A simple approach is the Lesk algorithm (1986)
 - The algorithm computes the intersection among the glosses associated to the different meanings of the words in the sentence
 - The combination yielding the maximum overall intersection is selected (the complexity is combinatorial in the number of senses)

Limitations of the Lesk algorithm

- The Lesk algorithm yields a 50-70% accuracy
 - The main limitation is its dependence on the quality of the glosses/ examples provided for each sense in the dictionary since they are usually short and do not carry enough information to train a classifier
 - The words in the context and their definition should share a significant intersection (they should share the maximum number of terms)
 - The coverage can be improved by adding the words related to the target but not already contained in the glosses
 - for example the words of the definitions containing the target word only when the actual sense of the target word is clear in that context
 - In the computation of the intersection/similarity among the context more flexible measure can be exploited
 - Correlation with TermFrequency-InverseDocumentFrequency weights in order to reduce the importance of most common words

Word similarity

- Synonymy is a kind of strict similarity
 - It defines a complete equivalence (substitutability) in given contexts
- A word similarity can be defined a kind of "semantic distance"
 - Definition on a given Thesaurus (e.g. Wordnet)
 - Words (senses) are linked by different relationships in a thesaurus
 - A semantic distance can be defined by the length of the minimum path leading from the fist word to the other using the links of a give relationship

 $sim(w_1, w_2) = -\log pathlenght(s(w_1), s(w_2))$

- Definition on the statistical distribution
 - Probability of finding the two words in similar contexts
 - Words are represented by N-dimensional vector and the similarity/distance is computed in this space